ROMANIAN ACADEMY - SCOSAAR

DOCTORAL SCHOOL of ENGINEERING SCIENCES, MECHANICS and COMPUTERS (SD-SIMC)

DISCIPLINE SHEET

Discipline name: Kinematics and Dynamics of Robots

Owner of course activities: Luige Vlădăreanu

Study year: 2023

Number of hours per week/Check/Credits		
Course	Examination Form	Credits
3	Examen	15

A. THE COURSE OBJECTIVES (The objectives are formulated in terms of professional skills):

SKIIIS).			
The general discipline objective	 Knowing and mastering the general principles of robot kinematics and dynamics 		
objective	•		
	 Acquiring the necessary knowledge for modelling robot 		
	kinematics and dynamics in applications and robotics design using basic concepts		
	Applications are made that facilitate the analytical and		
	numerical modelling of the behaviour of complex mechatronic		
	chains.		
	Development of general routines for robotic control and		
	simulation, using the concepts of kinematics and dynamics		
	learned		
Specific objectives:	• Creating the skills to identify the typical situations of each method		
Transfer to getter to a	studied, to understand and correctly apply the theoretical and		
	practical principles		
	The ability to use the principles of dynamic robot modeling,		
	movement kinematics and robot trajectory planning, the		
	ů i 1		
	fundamentals of monitoring and controlling mechatronic systems		
	equipped with artificial vision - concepts, development, modeling,		
	etc.		
	• The possibility to comparatively evaluate different models		
	nethods and algorithms for the same problem and to be able to		
	choose the best ones, for each situation in reality.		
	_ thouse the cost ones, for each breakfor in reality.		

B. TERMS (where applicable)

	·	
course implementation	tation • Providing an optical projector (video projector) together with	
	related accessories (power cables, data and video signal, remote	
	control)	
	Access to WOS	

C. SPECIFIC ACCUMULATED COMPETENCES (Regards the competencies provided by the study program of which the discipline is a part)

Professional skills	• Deep knowledge of modelling and identification of mechatronic	
	processes, modelling and image processing, image representation	

	and their properties, image segmentation and shape representation,
	object modelling and recognition
	• The ability to independently use the principles of modelling and
	simulation methods in motion control, simulation of tracking
	methods, simulation of automatic motion control using visual
	information (visual servoing), three-dimensional vision and
	motion analysis, modelling and simulation in camera positioning
	control smart videos, etc. /
Transversal skills	Adaptation to new technologies, professional and personal
	development, through continuous training using printed
	documentation sources, specialized software and electronic
	resources in Romanian and, at least, in one language of
	international circulation
	• The knowledge and skills acquired in this discipline will form
	the basis of future scientific and didactic research activities

D. COURSE CONTENT

a) Course

Chapter	Content	No. hours	
1.	Methods of dynamic modeling of robots, movement kinematics and	d	
	robot trajectory planning	o	
2.	The fundamentals of monitoring and control of mechatronic systems -	7	
	concepts, development, modeling	/	
3.	Modeling and identification of mechatronic processes	7	
4.	Modeling and simulation in the control of robotic systems	6	
	Total ore	28	

E. EVALUATION (The methods, forms of evaluation and their weighting in establishing the final grade are specified. The minimum performance standards are indicated, related to the competencies defined in point **A. Discipline Objectives**)

Tip activitate	Criterii de evaluare	Metode de evaluare	Pondere din nota finală
Course	Knowledge acquired	Written exam	55%
Seminar	Activity	Case studies presented	25%
Laboratory	Acquired experimental	The results of laboratory	20%
	knowledge	experiments	

The results of the discipline evaluation are expressed by the following qualifications: "Very good"; "Good"; "Satisfactorily"; "Unsatisfactory". The grades "Very good", "Good" and "Satisfactory" allow the doctoral student to obtain the credits.

METHODOLOGICAL REMARKS

Course: The teaching is based on the method of oral lectures and active dialogue with the students, supported by the presentation of illustrative examples and applications, or for recording the answers given to the students to their questions, but also on the use of the video projector to achieve the optimal conditions for direct communication with the students and of their active mobilization. The methods of communication with students are the expository method and the problematization method, both used head-on. Seminar and laboratory: Development of general routines for robotic modelling, with the idea of easy construction by hardware/software designers of a specific library. The types of exercises and problems covered in the seminar follow the lines of the course taught.

- F. CORROBRATION **OF** THE **DISCIPLINE CONTENTS WITH** THE **EXPECTATIONS OF** THE **REPRESENTATIVES OF** THE **EPISTEMIC** COMMUNITY, PROFESSIONAL ASSOCIATIONS AND REPRESENTATIVE EMPLOYERS FROM THE FIELD RELATED TO THE PROGRAM
 - The discipline provides a wide fund of fundamental and practical knowledge regarding the application of basic knowledge, concepts and methods regarding the architecture of robotic systems and the control of robotic systems.
 - Ability to select and browse bibliographic sources
 - Ability to learn new concepts by combining and referencing existing theoretical bases
 - Ability to work in a team for a software project with interconnected tasks
 - The ability to independently select and go through didactic materials external to the course

G. BIBLIOGRAFIE

- 1. Torsten Kröger and Friedrich M. Wahl (Eds.), Advances in Robotics Research Theory, Implementation, Application, Springer Verlag, 2009.
- 2. Vincent Duindam, Stefano Stramigioli, Modeling and Control for Efficient Bipedal Walking Robots, 211 pag, Editura Springer, ISBN 978-3-540-89917-4, e-ISBN 978-3-540-89917-1.
- 3. Luige Vladareanu, Controlul în timp real cu automate programabile în mecanica solidelor, 206 pag, Editura Bren, 2005, ISBN 973-648-431-0, ISBN 973-648-431-7.
- 4. Venturia Chiroiu, Tudor Sireteanu, Topics in Applied Mechanics, 509 pag, Editura Academiei Române, ISBN 973-27-1245-7, ISBN 973-27-1004-7.
- 5. Miomir Vukobratovic, Vejko Potkonjak, Vladimir Matijevic, Microprocessor-based and intelligent systems engineering, 246 pag., Editura Kluwer Academic, ISBN 1-4020-1809-6
- 6. Siciliano, B., Khatib, O., & Kröger, T. (Eds.). (2008). Springer handbook of robotics (Vol. 200). Berlin: springer.
- 7. Lynch, K. M., & Park, F. C. (2017). Modern robotics. Cambridge University Press.
- 8. Cook, G., & Zhang, F. (2020). Mobile robots: Navigation, control and sensing, surface robots and AUVs. John Wiley & Sons.
- 9. Kagan, E., Shvalb, N., & Ben-Gal, I. (Eds.). (2019). Autonomous mobile robots and multi-robot systems: Motion-planning, communication, and swarming. John Wiley & Sons.
- 10. Theodor Borangiu, Advanced Robot Motion Control, Editura AGIR, Editura Academiei Române, ISBN 973-8130-98-0 (Editura AGIR), ISBN 973-27-0976-6 (Editura Academiei Române).
- 11. Corke, P. I., & Khatib, O. (2011). Robotics, vision and control: fundamental algorithms in MATLAB (Vol. 73, p. 2). Berlin: Springer.
- 12. Craig, J. J. (2005). Introduction to Robotics: Mechanics and Control (3-rd Edition). PEARSON Prentice Hall, 41-46

Course owner

Doctoral School Director

Prof. dr. ing. Luige VLADAREANU

Prof. dr. ing. Mihaiela ILIESCU