## ACADEMIA ROMÂNĂ - SCOSAAR DOCTORAL SCHOOL OF ENGINEERING, MECHANICAL, COMPUTER SCIENCES

#### **DISCIPLINE SHEET**

Name of discipline: ANALYSIS AND SIMULATION OF MOBILE MECHANICAL

**SYSTEMS** 

Holder of course activities: CSI dr. ing. Mihaiela ILIESCU

Year of study: 1

| Number of hours per week/Checking/Credits: |                     |         |  |
|--------------------------------------------|---------------------|---------|--|
| Course                                     | Form of examination | Credits |  |
| Experimental course                        | Examination         | 15      |  |
| / module                                   |                     |         |  |
| 6/9                                        |                     |         |  |

# **A. DISCIPLINE OBJECTIVES** (Objectives are formulated in terms of professional competences):

| General objective of the | • Knowledge of the basic principles of mechanism design.          |  |
|--------------------------|-------------------------------------------------------------------|--|
| discipline               |                                                                   |  |
| Specific objectives:     | • Realization of kinematic, kinetostatic, dynamic analysis of the |  |
|                          | mechanism.                                                        |  |
|                          | Balancing mechanisms.                                             |  |
|                          | • Modeling and simulation of mechanisms – CAD software.           |  |
|                          | • Experimentation skills, mechanism / mechatronic system testing. |  |

### **B. CONDITIONS** (where applicable)

| course development | <ul> <li>computer, projection system, software: SolidWorks, Catia,<br/>MatLAb, SimuLink</li> </ul> |  |
|--------------------|----------------------------------------------------------------------------------------------------|--|
|                    | <ul> <li>Mechanical prototype, mechatronic systems</li> </ul>                                      |  |

# **C. SPECIFIC COMPETENCES ACCUMULATED (Refers** to the competences provided by the study program to which the discipline belongs;)

| Professional skills | <ul> <li>Increased capacity for analysis, synthesis, concept and design</li> <li>Ability to elaborate scientific papers and experimental reports</li> <li>Ability to critically interpret research results</li> <li>Ability to quickly and correctly understand and evaluate new information</li> </ul> |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transversal skills  | <ul> <li>Modeling, simulation, validation capability</li> <li>Teamwork skills</li> </ul>                                                                                                                                                                                                                |
| Transversar skins   | Oral and written communication skills                                                                                                                                                                                                                                                                   |
|                     | Respecting and developing professional values and ethics  Advertising to a professional values and ethics                                                                                                                                                                                               |
|                     | <ul> <li>Adaptation to new technologies, professional and personal<br/>development, through continuous training</li> </ul>                                                                                                                                                                              |

### D. CONTENT OF THE DISCIPLINE

### a) Course

| Chapter | Content                                                                                                                                                      |          | No. of |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
|         |                                                                                                                                                              |          | hours  |
| 1.      | Positional-kinematic modeling of modular groups                                                                                                              |          | 6      |
| 2.      | Mobile mechanical systems. Biomechanical systems                                                                                                             |          | 9      |
| 3.      | Strategies and models of movement of mobile mechanical sys                                                                                                   | stems    | 9      |
| 4.      | Kinematic/kinetostatic modeling of mobile mechanical system                                                                                                  | ns       | 12     |
| 5.      | Dynamic modeling of mobile mechanical systems                                                                                                                |          | 12     |
| 6.      | Balancing mechanical systems: static and dynamic concentration the mass of a kinematic element, balancing moving equipmental theorem of balancing mechanisms |          | 6      |
| 7.      | Concepts, algorithms and methods for modeling and simulation of mechanical systems                                                                           |          | 6      |
| 8.      | Simulation techniques for mobile mechanical systems                                                                                                          |          | 6      |
| 9.      | Control techniques for mobile mechanical systems                                                                                                             |          | 6      |
| 10.     | Case Studies – Mobile Mechanical Systems / Mechatronic Systems                                                                                               |          | 12     |
|         | Tot                                                                                                                                                          | al hours | 84     |
|         | <b>6 x</b> 14                                                                                                                                                | (Weeks)  |        |

### b) Experimental module - mechanical / mechatronic systems

| Chapter | Content                       |                | No. of |
|---------|-------------------------------|----------------|--------|
|         |                               |                | hours  |
| 1.      | Modular groups                |                | 9      |
| 2.      | Kinematic/kinetostatic models |                | 27     |
| 3.      | Dynamic models                |                | 18     |
| 4.      | Modeling / Simulation         |                | 36     |
| 5.      | Command / Control /           |                | 18     |
| 6.      | Case Studies                  |                | 18     |
|         |                               | Total hours    | 126    |
|         |                               | 9 x 14 (Weeks) |        |

1. **EVALUATION** (The methods, forms of evaluation and their weight in establishing the final grade are specified. Indicate minimum performance standards in relation to the competences defined in point **A. Objectives of the discipline**)

| <b>Activity Type</b> | Assessment criteria      | Assessment methods   | Share of final grade |
|----------------------|--------------------------|----------------------|----------------------|
| Course               | -Accuracy and quality of | Written exam         | 55%                  |
|                      | treatment of exam topics |                      |                      |
| Experience mode      | -Application of          | Theme - experimental | 45%                  |
|                      | knowledge acquired in    |                      |                      |
|                      | the course               |                      |                      |

**Minimum Performance Standard:** Knowledge of 70% of the information presented at the course and seminar

The results of the subject evaluation are quantified in grades, expressed on a scale from 10 to 1, with a minimum threshold of passing grade 5 (five). The stipendium awarded to doctoral students is suspended if they fail to obtain at least grade 8 (eight)

#### F. METHODOLOGICAL MILESTONES

Lecture combined with dialogue. Use of modern means of training (ppt). Course support.

- G. CORROBORATING THE CONTENTS OF THE DISCIPLINE WITH THE EXPECTATIONS OF REPRESENTATIVES OF THE EPISTEMIC COMMUNITY, PROFESSIONAL ASSOCIATIONS AND EMPLOYERS REPRESENTATIVE IN THE FIELD RELATED TO THE PROGRAM
- The discipline provides a wide background of fundamental and practical knowledge on modern methods research, design, testing specific to mobile mechanical / mectronic systems, etc.
- The discipline provides basic elements that help the doctoral student in the specialties of Mechanical Engineering in carrying out research.

#### H. BIBLIOGRAPHY

- 1. Comănescu, Adr., Comănescu, D., Dugăeşescu, I., Boureci, A., Basics of mechanism modeling, Politehnica Press Publishing House, Bucharest, 2010, ISBN 978-606-515-115-4.
- 2. C. Ocnărescu, M. Ocnărescu, "Structure and use of robots", 2012
- 3. Comănescu, Adr., Programs for modeling, simulation and animation of mechanisms and robots, UPB, 1998-2007;
- 4. \*\*\* Robotics and Autonomous Systems, 1992-2000.
- 5. Anderson, R.J., Building a modular robot control system using passivity and scattering theory, in: Proc. IEEE Int. Conf. Robotics and Automation, 1996, pp. 698–705.
- 6. Dumitru Deleanu, Basics of Mechanism Theory, Nautica Publishing House; ISBN: 978-606-681-109-5.2018.
- 7. Radu P Voinea, Ion V. Stroe, Mihai Valentin Predoi, Technical Mechanics, 2010.

Titular de curs CSI dr. ing. habil. Mihaiela ILIESCU Director Scoala doctorala