ACADEMIA ROMÂNĂ - SCOSAAR DOCTORAL SCHOOL OF ENGINEERING, MECHANICAL, COMPUTER SCIENCES

DISCIPLINE SHEET

Name of the discipline: MANUFACTURING TECHNOLOGIES FOR MECHANICAL

COMPONENTS OF INDUSTRIAL ROBOTS

Holder of course activities: CSI dr. ing. Mihaiela ILIESCU

Year of study: 1

Number of hours per week/Checking/Credits:			
Course	Form of examination	Credits	
Experimental course /	Examination	15	
module			
6/9			

A. DISCIPLINE OBJECTIVES (The objectives are formulated in terms of professional competence):

competence).			
General objective of the	• Knowledge of manufacturing technologies specific to		
discipline	mechanical components.		
Specific objectives:	• Knowledge of the basic principles of design – parts,		
	technologies.		
	• Knowledge of conventional / unconventional (laser) processing		
	processes.		
	• Establishing the characteristics of classic equipment / CNC /		
	machining centers.		
	• 3D printing techniques (Rapid Prototyping / Rapid		
	Manufacturing). Reverse engineering.		
	• Control and control of mechanical components within		
	mechatronic systems.		
	• Industry 4.0; Circular economy.		
	• Design and prototype of mechanical / mechatronic systems.		

B. CONDITIONS (where applicable)

course development • compu		computer, projection system, software: SolidWorks, Catia.	
	• technological system equipment / devices		

C. SPECIFIC COMPETENCES ACCUMULATED (Refers to the competences provided by the study program to which the discipline belongs;)

5 2 1 1 1 1 1 1 1		
Professional skills	1. Increased capacity for analysis, concept and design	
	2. Ability to elaborate scientific papers and experimental reports	
	3. Ability to critically interpret research results	
	4. Ability to quickly and correctly understand and evaluate new	
	information	
	 Modeling, simulation, prototyping capability 	
Transversal competențe	• Teamwork skills	
	 Oral and written communication skills 	
	Respecting and developing professional values and ethics	
	 Adaptation to new technologies, professional and personal 	
	development, through continuous training	

D. CONTENT OF THE COURSE _

a) Course

Chapter	Content		No. of
			hours
1.	Basics of manufacturing technologies for mechanical components of industrial robots		
2.	Design of technological processes for manufacturing mechanical components of industrial robots		
3.	Fundamentals of machining on CNC machine tools		6
4.	Manufacturing technologies on lathes and CNC turning centers		12
5.	Manufacturing technologies on vertical / horizontal machining centers with CNC		12
6.	Manufacturing technologies on CNC grinding centers		
7.	Manufacturing technologies on CNC teething machines		6
8.	Cold plastic deformation manufacturing technologies		12
9.	Additive Manufacturing technologies. Rapid Prototyping		9
10.	Reverse Engineering		6
		Total Hours	84
		6 x 14 (Weeks)	

b) Experimental module - mechanical / mechatronic systems

Chapter	Content		No. of hours
1.	Design of technological processes	18	
2.	Manufacturing technologies		
3.	Cold plastic deformation		
4.	Rapid Prototyping		
5.	Reverse Engineering		
6.	Case Studies		18
		Total Hours	126
		9 x 14 (Weeks)	

E. EVALUATION (The methods, forms of evaluation and their weight in establishing the final grade are specified. Indicate minimum performance standards in relation to the competences defined in point **A. Objectives of the discipline**)

Activity Type	Assessment criteria	Assessment methods	Share of final grade
Course	-Accuracy and quality of	Written exam	55%
	treatment of exam topics		
Experience mode	- Application of	Theme - experimental	45%
	knowledge acquired in		
	the course		

Minimum performance standard: Knowledge of 70% of the information presented at the course and seminar

The results of the subject evaluation are quantified in grades, expressed on a scale from 10 to 1, with a minimum threshold of passing grade 5 (five). The stipendium awarded to doctoral students is suspended if they fail to obtain at least grade 8 (eight)

F. METHODOLOGICAL MILESTONES

Lecture combined with dialogue. Use of modern means of training (ppt). Course support.

- G. CORROBORATING THE CONTENTS OF THE DISCIPLINE WITH THE EXPECTATIONS OF REPRESENTATIVES OF THE EPISTEMIC COMMUNITY, PROFESSIONAL ASSOCIATIONS AND EMPLOYERS REPRESENTATIVE IN THE FIELD RELATED TO THE PROGRAM_
- The discipline provides a wide background of fundamental and practical knowledge on modern research methods, design, manufacturing technologies, etc.
- The discipline provides basic elements that help the doctoral student in the specialties of Mechanical Engineering in carrying out research.

H. BIBLIOGRAPHY_

- 1. Neagu C., Iliescu V., Iliescu M., Purcărea M., "Technology of machine building Theoretical bases", ISBN 973-685-504-X, MATRIX ROM Publishing House, Bucharest, 2002
- 2. Mihaiela ILIESCU, "Technologies for Manufacturing Mechanical Components of Industrial Robots Fundamental Elements", publishing house PRINTECH, ISBN 978-606-521-984-7, 2013
- 3. Tache V., ş.a., "Design of devices for machine tools", Technical Publishing House, Bucharest, 1979
- 4. Popescu I., Vlase A., ş.a., "Technology of manufacturing mechanical products, vol. I", ISBN 973-685-495-7, MATRIX ROM Publishing House, Bucharest, 2005
- 5. Vlase A., ş.a., "Technology of machine building", Editura Tehnica, Bucharest, 1996
- 6. M. Piska, M. Hill, P. Cihlarova, "Fundamentals of CNC Machining", Brno University of Technology, Institute of Manufacturing Technology, 2008
- 7. Ciocârdia C., ş.a., "Technology of cold pressing", Didactic and Pedagogical Publishing House, Bucharest, 1991
- 8. N. Hopkins, R.J.M. Hague, P.M. Dickens, "Rapid Manufacturing an Industrial Revolution for the Digital Age", John Wiley & Sons Inc, West Sussex, 2006

Course holder CSI dr. ing. habil. Mihaiela ILIESCU Director of the Doctoral School CSI dr. ing. habil.
Mihaiela ILIESCU