ACADEMIA ROMÂNĂ - SCOSAAR DOCTORAL SCHOOL OF ENGINEERING, MECHANICAL, COMPUTER SCIENCES (SD-SIMC)

DISCIPLINE SHEET 2023-2024

Name of discipline: *Compound rheological models* **Holder of course activities:** prof.univ.dr, CSI, Polidor Bratu

Year of study: I

Number of hours per week/Checking/Credits			
Course/seminar	Form of examination	Credits	
44/28	Examination	30	

A. DISCIPLINE OBJECTIVES (Objectives are formulated in terms of professional competences):

General objective of the	• Understanding and ability to operate with compound	
discipline	rheological models for use in dynamic schematizations for the	
	response analysis of viscoelastic bond systemsce.	
Specific objectives:	• Acquisition of specific knowledge and representation of	
	viscoelastoplastic properties	
	Ability to analyze and optimize according to the variation of	
	specific parameters	
	 Design and evaluation of dynamic tree models 	

B. CONDITIONS (where applicable)

B. Con Billons (where appreadle)		
course development	•	

C. SPECIFIC SKILLS ACQUIRED (It targets the competences provided by the study program to which the discipline belongs)

Professional skills	 Increased ability to solve various issues Ability to elaborate scientific papers and experimental reports Ability to critically interpret research results Ability to quickly and correctly understand and evaluate new information Ability to identify alternative solutions and ability to demonstrate/support the relevance of these alternatives
Transversal competențe	 Teamwork skills Oral and written communication skills Respecting and developing professional values and ethics Adaptation to new technologies, professional and personal development, through continuous training

D. CONTENT OF THE DISCIPLINE

a) Course

Chapter	Content	
1. Linear models	Composite linear rheological models: mass subjected to external	
Simple	kinematic actions	
2. Linear models	Linear rheological models composed without mass subjected to	4
Simple	dynamic external actions	
3. Linear models	Linear rheological models composed with mass subjected to	4
Simple	external kinematic actions	
4. Linear models	Linear rheological models composed with mass subjected to	4
Simple	dynamic external actions	
5.Linear models	Dynamic behavior of the rigid with rheological links Voigt-	5
Compound	Kelvin, Maxwell and Zener	
6. Linear models	Dynamic behavior of the rigid with rheological bonds Hooke-	5
Compound	Voigt_kelvin, Maxwell-Voigt-Kelvin and Newton-Voigt-	
	Kelvin	
7. Dynamic	Dynamic analysis with compound rheological bonds at imposed	5
response	harmonic excitations	
8. Vibration	Setting optimal parameters for forces transmitted to the base and	
transmission	for dissipated energy	
9. Vibration	Kinematic or dynamic transmissibility coefficient variation	
transmission	curves	
10.	Calculation and optimization algorithms for dynamic isolation at	
Omptimization	a predictable level.	
	Total Hours	44

b) Seminar – 28 hours

E. EVALUATION (The methods, forms of evaluation and their weight in establishing the final grade are specified. Indicate minimum performance standards in relation to the competences defined in point **A. Objectives of the discipline**)

Activity Type	Assessment criteria	Assessment	Share of final
		methods	grade
Course	Acquiring the knowledge gained	-Oral exam	
	during the course		<mark>50%</mark>
Seminar	Activity	Case Studies	<mark>50%</mark>
		Composite	
		Materials	

The results of the discipline evaluation are expressed by the following grades: "Very good"; "Okay"; "Satisfactory"; "Unsatisfactory." The grades "Very good", "Good" and "Satisfactory" allow the doctoral student to obtain the credits.

F. METHODOLOGICAL MILESTONES

Lecture combined with dialogue. Use of modern means of training (ppt). Course support.

F. CORROBORATING THE CONTENTS OF THE DISCIPLINE WITH THE EXPECTATIONS OF REPRESENTATIVES OF THE EPISTEMIC COMMUNITY, PROFESSIONAL ASSOCIATIONS AND EMPLOYERS REPRESENTATIVE IN THE FIELD RELATED TO THE PROGRAM

- The discipline provides a wide background of fundamental and practical knowledge on modern and sustainable methods of characterization of solid materials with applications in machine and machine construction, construction, transport, etc.
- The discipline provides basic elements that help the doctoral student in the specialties of mechanical engineering, industrial engineering and civil engineering

G. BIBLIOGRAPHY

- 1. Bratu, P. Vibrations of mechanical systems, Technical Publishing House, 2000
- 2. Bratu, P. Analysis of elastic structures, Impulse Publishing House, 2010
- 3. Pavel, C, Constantinescu A, Mechanical vibrations, Matrixrom Publishing House, 2010
- 4. Harris, C; Crede, C, Share and Vibration Handbook, Ed.McGraw-Hill, Book Comp, 1976
- 5. Stănescu, D, Munteanu, L, Chiroiu, V, Pandrea, N, N. Dynamic Systems, Vol. 1, 2, Ed. Academiei 2007, 2011

Course holder

Director of the Doctoral School

prof.univ.dr, CSI, Polidor Bratu

dr. ing.dr. CS I, Mihaiela Iliescu